

Distributed Energy Resources For Federal Facilities Using Industrial Gas Turbine Generators

Solar Turbines A Caterpillar Company

Serving Power Generation Applications from 1-50 MW

Broad Applications Experience in CHP

Application	No. of Units
Airports	8
Ceramic Manufacturing	57
Chemical / Petrochemical	122
Pharmaceuticals	24
Communications	2
District Heating	125
Food Processing	17
Government-Owned Power Generation	43
Hospitals	4
Hotels	8
Independent Power Producers (IPPs)	29
Investor-Owned Utilities	29
Landfill / Waste Treatment	62
Manufacturing	26
Mining	87
Municipals/Rurals/Cooperatives	180
Pulp and Paper	54
Textiles	11
Tires and Rubber	58
University / Research Facilities	39
Other Commercial	191
Other Industrial	484
Oil and Gas Applications Total	1577

Advantages of Integrated Energy Systems

- Improves Reliability of Power and Steam/Chilled Water Supply
 - Grid or other standby generators for backup
- Large Cost Savings
 - Typical Payback Period is 3 6 Years
- High efficiency
- Reduces Global Emissions
- Eliminates Grid Congestion
- Improves Fuel Utilization

- High Capital Cost
- Requires Consistent Fuel Supply
- Need Alternative Power Supply for 100% Reliability
- Economics Depend on Spark Spread Ratio
- Committed Capital Cost

Efficiency Comparison - Central Power Plant

EFFICIENCY OF CENTRAL POWER GENERATION

100%

98%

32%

31%

29%

NATURAL RESOURCE COAL POWER
PLANT

TRANSMISSION

DISTRIBUTION

END USES

Efficiency Comparison - Combined Cycle Power Plant

EFFICIENCY OF POWER DISTRIBUTED COMBINED CYCLE

100%

91%

50%

48%

NATURAL RESOURCE COMBINED CYCLE POWER PLANT

DISTRIBUTION

END USES

Efficiency Comparison - BCHP System

DELIVERED EFFICIENCY OF BCHP

30% to 50% Electrical 50% to 30% Thermal

100%

91%

80%

or

NATURAL RESOURCE

BCHP POWER PLANT END USES

Heat to Power Ratios for CT CHP Applications

Typical CHP System

CHP System Performance

		Exhaust Steam Flow Unfired		Steam Flow Duct Fired to 1700oF		
Product	Power, MWE	Energy, MMBtu/hr	Lb (000)/hr	Eff, %	Lb (000)/hr	Eff, %
Saturn 20	1.2	11.7	8.8	72	19.7	85
Centaur 40	3.4	28.7	18.8	69	56.1	84
Centaur 50	4.4	34.4	24.0	74	57.4	85
Taurus 60	5.4	38.7	30.0	73	67.8	87
Taurus 70	7.4	47.4	32.3	75	81.9	87
Mars 100	10.4	71.8	48.6	75	125.8	87
Titan 130	13.7	86.4	62.7	79	150.4	87

ISO Conditions: 59°F; 3 In. Inlet, 7 In. Exhaust Losses;

Sea Level; Saturated Steam @ 150 psig

Typical CHP Installations

Typical Building Heating, Cooling and Power Plant

Useful Outputs: Electrical Power, Chilled Water & Hot Water

Example Package Footprint: Saturn BCHP - 10' x 60' Centaur 40 BCHP - 10' x 70'

BCHP Capabilities

Engine Family	KW Output	Chilling, Tons	Heating, MMBTU/hr
Saturn 20	1200	855	7.4
Centaur 40	3400	1900	16.1
Centaur 50	4600	2500	21.6
Taurus 60	5400	2900	24.9
Taurus 70	7500	3300	28.2

Data above at ISO conditions, 15°C, sea level
Assumes double effect absorption chillers
Exhaust fired chiller can produce hot water temperatures up to 93°C

Solar's Power Gen Product Families

Government / Military CHP Projects

 Lackland AFB, San Antonio, TX 	10 MW
 General Services Administration, DC 	10 MW
 Groton Navy Yard, Groton, CT 	5 MW
 Valcartier AFB, Quebec City 	3 MW
 Portsmouth Navy Yard, Portsmouth, NH 	5 MW
 Balboa Naval Hospital, San Diego 	3 MW
 U.S. Coast Guard, Kodiak, AK 	6 MW
 National Animal Research Center, IA 	1 MW
 Avenal State Prison, Avenal, CA 	7 MW
 Hunterdon State Prison, Clinton, NJ 	4 MW
 Otay State Prison, San Diego 	3 MW
 Satellite Center, Sunnyvale, CA 	12 MW
 Wisconsin State Prison, Waupun, WI 	1 MW
 Twenty Nine Palms Marine Base, CA 	7 MW
 Social Security Administration, MD 	42 MW
 VA Hospital, North Chicago 	5 MW
 VA hospital, West Chicago 	3 MW

Balboa Naval Hospital, San Diego

Combined Heat and Power Plant

Balboa Naval Hospital, San Diego

3x 1 MWe CT with HRSG

Lackland AFB, San Antonio, Texas

10 MW Combined Heat and Power Plant

Lackland AFB, San Antonio, Texas

10 MW Combined Heat and Power Plant

General Services Administration Washington, D.C.

10 MW Combined Heat and Power Plant

Social Security Administration

42 MW Standby and Peaking Power Plant

Social Security Administration

42 MW Standby and Peaking Power Plant

5 MWe of Portable Power

Further Information

www.solarturbines.com

